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Introduction/Motivation

� A design pattern is a description of a set of 

proven solutions to a set of recurring problems 

within a context.

� Reusing patterns improves quality and 

productivity of software designs.  

� Patterns are mostly described using informal 

means (text and graphical notations) that lack 

well-defined semantics.
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Introduction/Motivation

� As the number of patterns is growing, informal 

specifications were found ambiguous and 

sometimes misleading in understanding and 

properly applying patterns. 

� We present BPSL that accurately describe 

patterns in order to allow rigorous reasoning 

about them their instances and their 

composition. 
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Introduction/Motivation

� We focus on the solution element of the pattern 

and not on others aspects such as intent, 

problem, etc…

� The main focus of this work is to show how 

BPSL can be used to formally specify patterns 

at 3 levels of abstraction: patterns, pattern 

composition and instances of patterns. 
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Balanced Pattern Specification 
Language (BPSL)

� BPSL uses First Order Logic (FOL) and 

Temporal Logic of Actions (TLA) as formal basis 

to specify the structural and behavioral aspect of 

patterns respectively.

� The structural part of BPSL is called SBPSL where 

the “S” stands for structural.

� The behavioral part of BPSL is called BBPSL, 

where the “B” stands for behavioral.
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SBPSL

� SBPSL is a very simple first-order language having 

the following characteristics:

� Each formula is a sentence (closed well-formed 

formula) as SBPSL does not contain free variables.

� SBPSL does not support function symbols, restricts 

predicates to have two arguments and requires 

only the usage of the existential quantifier (∃).

� Thus, its semantics completely derives from FOL
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SBPSL

� Variables and constants of SBPSL are many-sorted. 

� Variable and constant symbols represent classes, 

typed variables and methods. 

� The sets of classes (or references to classes), 

typed variables and methods are designated C, V 

and M respectively. 

� Typed variables represent variables of any 

predefined or user-defined types except elements 

of set C. 
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SBPSL

� Binary predicate symbols represent permanent 

relations between variables. 

� SBPSL defines a set of primary permanent 

relations based on which other permanent 

relations can be built (Table 1) 

� The term "permanent" is used to differentiate 

these relations with "temporal" relations defined 

later.
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SBPSL

� Primary permanent relations represent the smallest 

set on top of which any other permanent relation 

can be built (for example forwarding).

� Forwarding(m1,m2)⇔Invocation(m1,m2)∧Argument(

a1,m1)∧...∧Argument(an,m1) ∧Argument(a1,m2)∧…∧

Argument(an,m2), where m1, m2 ∈ M and {a1,…, an}

⊂ C∪V
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Table 1, Primary Permanent 
Relations

Indicates that a method returns a reference to a class.C×MReturn-type

Indicates that a typed variable is an argument of a method.V×M

Indicates that a reference to a class is an argument of a method.C×MArgument

Indicates that a method of a class invokes a method of another class.C×C

Indicates that a specific method of a class invokes a method of another class.M×C

Indicates that a method of a class invokes a specific method of another class.C×M

Indicates that the first method invokes the second method.M×MInvocation

Indicates that one of the methods of a class contains an instruction that creates a new instance 

of another class.

C×C

Indicates that a method contains an instruction that creates a new instance of a class.M×CCreation 

Indicates that the first class inherits from the second.C×CInheritance

Indicates that one class defines a member whose type is a reference to one (many) instance(s) 

of the second class.

C×CReference-to-

one

(-many)

Indicates that a typed variable is defined as an attribute in a certain class.V×C

Indicates that a method is defined in a certain class.M×CDefined-in

IntentDomainName
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A Summary of TLA Concepts

� In TLA, a semantic is given by assigning a semantic 
meaning “F‘ to each syntactic object F. 

� The semantics of TLA is defined in terms of states, 

where a state is an assignment of values to variables. 

� A state s assigns a values s(x) to a variable x. 

� The collection of all possible states is denoted St.

� A state is a function from the set of variables Var to the 

set of values Val.  
� Thus, s“x‘ denotes s(x). The meaning “x‘ of variable x

is a mapping from states to values.
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A Summary of TLA Concepts

� A state function is a non-Boolean expression built from 
variables and constant symbols. The meaning “f‘ of a state 

function f is a mapping from the collection St of states to the 

collection Val of values. 
� A postfix functional notation is used letting s“f‘ denote the 

values that “f‘ assigns to state s. s“f‘ f(∀ 'v':s“v‘/v)

� f(∀ 'v':s“v‘/v) denotes the value obtained from f by replacing v 
by s“v‘ for all variables v. The symbol means equal by 

definition.

� A state predicate (or predicate) is a Boolean expression built 
from variable and constant symbols. “P‘ is a mapping from 

states to Booleans, so s“P‘ equals true or false for every state 

s. A state s satisfies a predicate P iff s“P‘ equals true. 
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A Summary of TLA Concepts

� An action is a Boolean-valued expression formed from 

variables, primed variables and constant symbols. 

� An action represents a relation between old states and 

new states, where the unprimed variables refer to the 

old state and the prime variables refer to the new state. 
� The meaning “A‘ of an action A is a function that 

assigns a Boolean s“A‘t to a pair of states s,t. 

� s“A‘t is obtained from A by replacing each unprimed 

variable v by s“v‘ and each primed variable v' by t“v‘ as 

follows: s“A‘t A(∀ 'v':s“v‘/v,t“v‘/v').



15

A Summary of TLA Concepts

� A pair of successive states is called a step.
� The pair of states s,t is called an "A step" iff s“A‘t equals true. 

� A predicate P can also be viewed as an action that does not 

contain primed variables. 
� Thus s“P‘t is a Boolean which equals s“P‘ for any states s and 

t. 

� A pair of states s,t is a P step iff it satisfies P.

� For any state function or predicate F, we define F' to be the 

expression obtained by replacing each variable v in F by the 

primed variable v'. 

� F' F(∀ 'v':v'/v) 
� If P is a predicate symbol then P' is an action and s“P'‘t equals 

t“P‘ for any state s and t.
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A Summary of TLA Concepts

� An action A is said to be valid, written as JA, iff every 
step is an A step. Formally JA ∀s,t ∈ St: s“A‘t. 

� A special case of this is JP ∀s ∈ St: s“P‘. 

� A valid action is true regardless of the values substituted 
for primed and unprimed variables. 

� For any action A, Enabled A is a predicate that is true for 
a state iff it is possible to take an A step starting in that 
state. 

� Semantically, Enabled A is defined by s“Enabled A‘ ∃
t ∈ St: s“A‘t for any state s.

� A temporal formula is built from elementary formulas 
using Boolean operators (basically ∧ and ¬ as the others 
are derived from these two) and the unary operator 
(read always).
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A Summary of TLA Concepts

� TLA is a special case of simple temporal logic. The 
semantics of temporal logic is based on behaviors, 
where a behavior is an infinite sequence of states. 

� The meaning of a temporal formula is defined in terms of 
the elementary formulas it contains. 

� A temporal formula is interpreted as an assertion about 
behaviors.

� Formally, the meaning “F‘ of a formula F, is a Boolean-
valued function on behaviors.

� Let σ“F‘ denote the Boolean value that formula F assigns 
to behavior σ, and we say that σ satisfies F iff σ“F‘
equals true. 

� The definition of σ“F∧G‘ and σ“¬F‘ are given below:

� σ“F∧G‘ σ“F‘∧σ“G‘ and σ“¬F‘ ¬σ“F‘
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A Summary of TLA Concepts

� Let „s0,s1,s2,…Ò denote the behavior whose first state is 

s0, second state is s1, and so on.
� „s0,s1,s2,…Ò“F‘ ∀ n∈Nat: „sn,sn+1,sn+2,…Ò“F‘

� Nat is the set of natural numbers. F asserts that F is 

always true. For any temporal formula F, let ◊F be 

defined by ◊F ¬¬F.

� The above formula asserts that it is not the case that F is 

always false. Thus, ◊F asserts that F is eventually true.
� „s0,s1,s2,…Ò“◊F‘ ∃ n∈Nat: „sn,sn+1,sn+2,…Ò“F‘

� Therefore, a behavior satisfies ◊F iff F is true at some 

time during the behavior.
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A Summary of TLA Concepts

� „s0,s1,s2,…Ò“◊F‘ ∀ n∈Nat: ∃ m∈Nat „sn+m,sn+m+1,sn+m+2,…Ò“F‘

� A behavior satisfies ◊F iff F is true at infinitely many times during 
the behavior i.e. that F is true infinitely often. 

� The formula ◊F asserts that eventually F is always true. Thus, a 
behavior satisfies ◊F iff there is some time such that F is true 
from that time on.

� „s0,s1,s2,…Ò“◊F‘ ∃ m∈Nat: ∀ n∈Nat: „sn+m,sn+m+1,sn+m+2,…Ò“F‘

� A temporal formula F is said to be valid, written JF iff it is satisfied 
by all possible behaviors.

� JF Í ∀ σ∈ St∞∞∞∞: σ“F‘

� Where St∞∞∞∞ denotes the collection of all behaviors (infinite 
sequences of elements of St).
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A Summary of TLA Concepts

� A stuttering step on an action A under the state 
function f occurs when either the action A occurs or 
the variables in f are unchanged.  

� For any action A and state function f, we let [A]f
A∨(f'=f).

� Let A be any action and f any state function. Then ¬A
is also an action, so ¬[¬A]f is a TLA formula. 
Applying the definitions gives:

� ¬[¬A]f ≡ ◊¬[¬A]f ≡ ◊¬(¬A∨(f'=f)) ≡ ◊(A∧ (f'≠f))

� We define action 〈A〉f by 〈A〉f A∧(f'≠f )

� The above calculation shows that ◊〈A〉f ≡ ¬[¬A]f, so it 
is a TLA formula. 
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A Summary of TLA Concepts

� Reasoning about fairness is an important aspect when 
modeling concurrency.

� Fairness is concerned with progress properties, facts that 
ensure that no process is consistently neglected 

� In TLA, two types of fairness properties are declared

� An action is said to satisfy the weak fairness condition if at all 
times either it is eventually executed or it eventually becomes 
disabled.

� An action is said to satisfy the strong fairness condition if at all 
times either it will eventually be executed or eventually it will 
be disabled at all later states.

� The definitions for these two conditions are given as:

� WFf(A) (◊〈A〉f) ∨ (◊¬Enabled 〈A〉f)

� SFf(A) (◊〈A〉f) ∨ (◊¬Enabled 〈A〉f)
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� BBPSL completely derive from TLA

� TLA formulas can be written as Φ InitΦ ∧  [N]u∧F, 

where:

� InitΦ is a predicate specifying the initial values of 

variables.

� N is the system's next-state relation (disjunction of 

actions)

� u is an n-tuple of variables

� F is the conjunction of formulas of the form SFf(A) and/or 

WFf(A), where A is an action representing a subset of the 

set of actions.

BBPSL
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Temporal Relations

� BBPSL uses a special type of predicates called temporal 
relations. A temporal relation can be defined as 
follows: 

� TR(C1<cardinality>,C2<cardinality>),  where TR is the 
name of the temporal relation, C1 and C2 are classes 
involved by this relation, and cardinality represents the 
number of instances (objects) of each class that 
participate in the relation.  

� Cardinality can be represented as either a closed 
interval <n..m>, where n and m represent any two 
positive integers or <*> to depict any possible number 
of instances.  



24

Temporal Relations

� When used in actions, temporal relations can take 
different forms each of which `

� TR(o1,o2) depicts that an object o1 of a class C1 is 
currently linked through TR with an object o2 of a class 
C2.

� ¬TR(o1,o2) depicts that objects o1 and o2 are no longer 
linked through TR. 

� TR(o1,C2) depicts that object o1 is linked with all objects 
of the class C2. 

� ¬TR(o1,C2) depicts that object o1 is not linked through 
TR with any object of class C2.

� ¬TR(C1,C2) depicts that no object of class C1 is linked 
through TR with any object of  class C2.
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BPSL Formula (Table 2)

InitΦ P {P is the initial predicate}

N A1∨...∨Ar {A1...Ar are actions}

u 〈ui,...,uj〉 {1<=i<=n and 1<=j<=n}

Φ InitΦ ∧ [N]u ∧ WFu(A) {A≡Ai1∨...∨Ai2,1<=i1<=i2<=r } 

TR1(z1<cz1>,t1<ct1>),...,TRm(zm<czm>,tm<ctm>)∈ TR; 

{z1,...,zm,t1,...,tm ∈ C}

u1,...,un ⊂ (Member of C)∪V;

∃ x1,...,xq1,y1,...,yq2 ⊂ C∪V∪M ∧iPRi  (xj,yk)                  

{1<=i<=q, 1<=j<q1;1<=k<=q2}
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Case Study 1:Observer Pattern

notify(){

for all o in observers

o->update(); }

get-state ()

set-state()

Concrete-Subject

get-state(){

return subject-

state;}

set-state()

{ …

notify();}

subject-state

update(Subject)

update (Subject)

Concrete-Observer

update (){

observer-state=

subject->get-state();}

observer-state

observers

subject

*

attach(Observer)

detach (Observer)

notify ()

Subject Observer
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BPSL Specification of Observer 
Pattern (Table 3)

InitY1

�

¬Attached(s, concrete-observer)

Attach

�

¬Attached(s,o)∧ Attached'(s,o)

Notify 

�

Attached(s,o)∧ ((s.subject-state)' =d) ∧¬Updated'(s,concrete-observer)  

Update

�

Attached (s,o) ∧ ¬Updated(s,o) ∧ ( (o.observer-state)' = (s.subject-state)) ∧ Updated'(s,o) 

Detach 

�

Attached(s,o) ∧ ¬Attached'(s,o)

M 

�

Attach ∨ Notify ∨ Update∨ Detach

u 

�

〈s,o〉
Y1

�

InitY1 ∧ [M]u ∧WFu (Update) 

Attached(concrete-subject<0..1>,concrete-observer<*>),Updated(concrete-subject<0..1>,concrete-observer<*>)∈ TR;

s ∈ concrete-subject; o ∈ concrete-observer; d ∈ V;

Φ1≡∃ subject, concrete-subject, observer, concrete-observer  ∈ C; 

subject-state, observer-state ∈ V;

attach, detach, notify, get-state, set-state, update ∈ M: 

Defined-in(subject-state, concrete-subject)∧ Defined-in (observer-state, concrete-observer) ∧Defined-in(attach, subject)

∧Defined-in (detach ,subject) ∧Defined-in (notify, subject) ∧Defined-in(set-state, concrete-subject) ∧Defined-in (get

state,  concrete-subject) ∧ Defined-in (update, observer) ∧ Reference-to-one(concrete-observer, concrete-subject) ∧

Reference-to-many(subject, observer) ∧ Inheritance(concrete-subject, subject) ∧ Inheritance(concrete-observer,

observer) ∧ Invocation(set-state, notify) ∧ Invocation(notify, update) ∧ Invocation(update, get-state) ∧

Argument(observer, attach) ∧ Argument(observer, detach) ∧ Argument(subject, update) 
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Why Temporal Relations

� Temporal relations can be replaced by Boolean expressions 
made of variables (primed and unprimed) and constant 
symbols. 

� However, this will involve implementation details rather that 
staying at design level, which is the level of abstraction of 
patterns.

� In the action Attach, instead of using the temporal relation 
Attached, we could use a list handled by a subject (we call 
this set List) and containing the object references of the 
observers attached to it. 

� As such, action Attach could be written as: Attach o ∉ List 
∧ List'=List ∪ {o}
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Case Study 2:Mediator Pattern

Mediator Colleague

Concrete-Mediator

Concrete-olleague1

col1

Mailbox

message

put(colleague,

colleague, message)

get(colleague)

*

connect(colleague)

disconnect(colleague)

mediator

Concrete-olleague2

col2

mboxes
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BPSL Specification of Mediator 
Pattern (Table 4)

InitΨ2

�

¬Connected(colleague, m) ∧ ¬ Owned(mailbox, colleague)

Connect

�

¬Connected(c1,m) ∧ Connected'(c1,m)   

Acquire 

�

Connected(c1,m) ∧¬ Owned(mb, colleague) ∧ Owned'(mb,c1) 

Release  

�

Owned(mb,c1) ∧¬Accessed(mb, colleague) ∧ ¬Owned'(mb,c1) 

Put 

�

Owned(mb,c1) ∧Connected(c2,m) ∧ (mb.message)'=d  ∧ Accessed'(mb,c2) 

Get 

�

Accessed (mb,c1) ∧ (d’=mb.message) ∧ ¬Accessed'(mb,c1) 

Disconnect  

�
Connected(c1,m) ∧¬Owned(mailbox,c1) ∧ ¬Connected'(c1,m) ∧¬Accessed'(mailbox,c1)

N 

�

Connect ∨ Acquire ∨ Release ∨ Put ∨ Get ∨ Disconnect

v 

�

〈mb〉
Ψ2

�
InitY2 ∧ [N]v ∧WFv (Get)

Owned (mailbox<0..1>, colleague<0..1>),Connected (colleague<*>,concrete-mediator <0..1>),

Accessed (mailbox<*>, colleague<*>) ∈ TR;

m ∈ concrete-mediator; c
1
∈ concrete-colleague1; c

2
∈ concrete-colleague2;mb ∈ mailbox;d ∈ V;

Φ
2
≡ ∃ mediator, concrete-mediator, colleague, concrete-colleague1,concrete-colleague2, mailbox ∈ C;   message 

∈ V; connect, disconnect, put, get ∈ M: 

Defined-in (connect ,mediator) ∧ Defined-in (disconnect, mediator) ∧ Defined-in(message, mailbox) ∧

Defined-in (put ,mailbox) ∧ Defined-in(get, mailbox) ∧ Reference-to-one(colleague, mediator) ∧

Reference-to-one(concrete-mediator, concrete-colleague1) ∧ Reference-to-one(concrete-mediator, concrete-

colleague2) ∧ Reference-to-many(mediator, mailbox) ∧ Inheritance(concrete-mediator, mediator) ∧

Inheritance(concrete-colleague1, colleague) ∧ Inheritance(concrete-colleague2, colleague) ∧ Argument(colleague, 

connect) ∧ Argument(colleague, disconnect) ∧ Argument(colleague, put) ∧ Argument (message, put) ∧

Argument(colleague, get) 



31

Pattern Composition

The correctness of pattern composition is 

satisfied by both of the following fundamental 

rules:

� The composition does not make a pattern  

looses any of its properties.

� The composition does not add new properties 

to any pattern.
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Pattern Composition

� Name mapping is applied during composition 
of patterns.

� Name mapping associates properties defined 
in the patterns to be composed with properties 
defined in the composition. 

� For the structural aspect properties represent 
terms (variables and constants) and 
predicates, while for the behavioral aspect they 
represent predicates (temporal relations), 
variables and actions. 



33

Pattern Composition

� Let P1 and P2 denote sets containing properties of the 
patterns to be composed and let Q denotes a set 
containing properties of the composition of P1 with P2.

� Name mappings are defined as:

C1: P1→ Q

C2: P2→ Q

� The correctness rules define above (informally), can be 
formalized as follows (f represents any property):

(1)  f∈(P1∩P2) ⇒ C1(f)=C2(f) 

f∈((P1∪P2)\(P1∩P2)) ⇒ (C1(f)∈Q) ∨ (C2(f)∈Q)

(2) f∉(P1∪P2)⇒(C1(f)∉Q) ∧ (C2(f) ∉ Q )

� Note that (2) means that Q can contain new properties 
not related to P1 and P2.
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Pattern Composition

� In FOL, a substitution list Theta ={v1/t1,..,vn/tn} means to 
replace all occurrences of variable symbol vi by terms ti. 

� Substitutions are made from left to right order in the list. For
example subst({x/Pasta,y/John},eats(y,x)) = eats(John, 
Pasta).  

� In SBPSL, we restrict the terms ti to variable and constant 
symbols only, i.e., function symbols are not supported, as 
they are not used in BPSL.

� Substitutions can also be applied to TLA actions in a similar 
way as described above. If A1 is an action involving 
variables x1,…,xn, then A2 an action involving variables 
y1,…,yn can be defined based on A1 as follows: A2

subst({x1/y1,…,xn/yn}, A1). 
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Pattern Composition

Following are declarations needed for the composition formulas given 
below:

� P1 and P2 are the patterns to be composed and P is the result of the 
composition.

� Pi(p,q) is a temporal relation of P1, Qj(s,t) is a temporal relations of P2

and Rk(w,z) is a temporal relation of P. The cardinalities have been 
omitted and {p,q,s,t,w,z} ⊂ C.

� Φ is the SBPSL formula of P, Φ1 is the SBPSL formula of P1, Φ2 is the 
SBPSL formula of P2 and Φ3 is an SBPSL formula representing the extra 
variables, constants and permanent relations of the composition 
itself.

� Ψ is the BBPSL of P, Ψ1 is the BBPSL formula of P1, Ψ2 is the BBPSL

formula of P2.

� u1…um, v1,…,vm ∈ C∪V∪M

� x1…xn,y1…yn∈ (Member of C)∪V
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Pattern Composition (Table 5)

Φ≡subst({u1/v1,…,um/vm},Φ1∧Φ2)∧Φ3 {structural aspect}    

Rk(w,z)≡subst({p/w,q/z},Pi(p,q)) or 

Rk(w,z)≡subst({s/w,t/z},Qj(s,t))            {temporal relations}                              

Ψ ≡subst({x1/y1,…,xn/yn},Ψ1∧Ψ2)         {behavioral aspect}

� The temporal relations of the pattern composition represent the 

union of the temporal relations of the patterns to be composed. 

� Moreover, the substitutions made in formula Φ1∧Φ2 also take effect 

in the temporal relations of the pattern composition. 

� We have shown substitutions in temporal relation here just for 

clarity. 

� In the formula of the pattern composition, we do not explicitly show 

the substitutions in temporal relations.
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Pattern Composition

InitY1 �

P          {initial predicate}

M A1∨...∨Am1 {actions}

u 〈u1,...,um2〉 {variables}
Y1 InitY1 ∧ [M]u∧WFu(A) {A≡Ai1∨...∨Aj1, 1<=i1<=j1<=m1}

InitY2 Q {initial predicate}

N B1∨...∨Bn1 {actions}

v 〈v1,...,vn2〉 {variables}
Y InitY2 ∧ [N]v∧WFv(B) {B≡ Bi2∨...∨Bj2, 1<=i2<=j2<=n1}

InitY subst({...},InitY1) ∧ subst({...},InitY2) 

W C1∨...∨Cm1+n1 {Ci≡subst({...},Aj) or Ci≡subst({...},Bk), 1<=i<=m1+n1, 1<=j<=m1, 1<=k<=n1}                             

w u ∪ v
Y InitY ∧ [W]w ∧WFw(A) ∧WFw(B)

{…} represents any substitution list. It is to be noted that common permanent relation, initial 

predicates and actions will only appear once in the composition formulas as by simple logic 

P∧P≡P and P∨P≡P.
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Case Study 3:Observer-Mediator 
Pattern Composition

Mediator Colleague

Subject-Observer-

Mediator

Observer-Colleaguecol1

Mailbox

message

put(colleague,List

<colleague>,

message)

get(colleague)

mboxes*

connect(colleague)

disconnect(colleague)

mediator

observer-state

Subject-Colleague

subject-state

col2

attach(Observer)

detach (Observer)

notify () 

Subject

update(Subject)

Observer
observers *

subject

set-state()

get-state()

update(Subject)
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BPSL Specification of Observer-
Mediator Pattern Composition (Table 6)

InitY subst({s/sc, concrete-observer/observer-colleague},InitY1) ∧ subst({m/som},InitY2)

Observer-Attach subst({s/sc,o/oc}, Attach)

Subject-Notify subst({s/sc,o/oc,concrete-observer/observer-colleague},Notify)

Observer-Update subst({s/sc,o/oc},Update)

Observer-Detach subst({s/sc,o/oc}, Detach)

Colleague-Connect  subst ({(c1/sc)∨(c1/oc), m/som}, Connect) 

Subject-Acquire subst({c1/sc,m/som},Acquire) 

Subject-Release subst({c1/sc},Release) 

Subject-Put subst({ c1/sc, c2/observer-colleague, m/som, d/sc.subject-state},Put)

Observer-Get subst({c1/oc, d/oc.observer-state},Get) 

Colleague-Disconnect subst({(c1/sc)∨(c1/oc), m/som}, Disconnect) 

W Observer-Attach ∨ Subject-Notify ∨Observer-Update ∨ Observer-Detach ∨ Colleague-Connect 

∨ Subject-Acquire ∨ Subject-Release ∨ Subject-Putt ∨ Observer-Get ∨ Colleague-Disconnect 

w 〈 sc,oc,mb〉
Ψ InitY ∧ [W]w∧WFw (Observer-Update) ∧ WFw(Observer-Get) 

Φ≡subst({concrete-mediator/subject-observer-mediator,concrete-colleague1/subject-
colleague,concrete-colleague2/observer-colleague, concrete-observer/observer-colleague, 

concrete-subject/subject-colleague},Φ1∧Φ2) 
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Checking The Correctness of 
Pattern Composition 

� The Observer pattern has 4 classes, the Mediator 
pattern has 6 classes, while the Observer-Mediator
pattern composition has 8 classes. 

� This means that there are 2 common classes (which 
have been mapped to Observer-Colleague and 
Subject-Colleague). 

� These mappings have been reflected in the 
substitutions shown in compartment 1 of Table 6 
(concrete-colleague1/observer-colleague, concrete-
colleague2/subject-colleague,concrete-
observer/observer-colleague,concrete-subject/subject-
colleague).  
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Checking The Correctness of 
Pattern Composition 

� Moreover all terms and predicates belonging to either 
Observer or Mediator patterns have been mapped to 
themselves (remained unchanged) in the Observer-
Mediator pattern composition, except the Concrete-
Mediator class which has been renamed Subject-
Observer-Mediator. 

� Based on the above discussion, condition (1) holds.  
Since no new terms and/or predicates about either the 
Observer or the Mediator pattern have been added by 
the composition, rule (2) also holds.
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Checking The Correctness of 
Pattern Composition 

� As for the behavioral aspect specification, it can be 
seen that it follows exactly the composition formula 
shown in Table 5.

� The Observer and Mediator patterns have no common 
variables, temporal relations or actions. Temporal 
relations, initial predicates and actions of the 
composed pattern are based on those of the original 
pattern with some straightforward substitutions of 
variables. 
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Checking The Correctness of 
Pattern Composition 

� Hence rule (1) holds. The changes required on actions 
of the Observer-Mediator pattern composition are as 
follows: 

� Only a Subject Colleague can own a mailbox.

� A Subject Colleague can put messages for a group of 
Observer Colleagues.

� Since no new variables, predicates or actions about 
either the Observer or the Mediator pattern have been 
added by the composition, rule (2) also holds.
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Formal Specification of Instances 
of Patterns

� BPSL specification of instances of patterns is done by applying substitutions on the 
specification of the original pattern. Following are declarations needed for pattern 
instantiation formulas given below:

� P1 is a pattern and P is an instance of P1.

� Qi(p,q) is a temporal relation of P1, Rj(s,t) is a temporal relations of P. The 
cardinalities have been omitted and {p,q,s,t} ⊂ C.

� Φ1 is the SBPSL formula of P1, Φ is the SBPSL formula of P.

� Ψ 1 is the BBPSL formula of P1, Ψ is the BBPSL formula of P.

� Φ2 is an SBPSL formula representing extra required variables and permanent 
relations for P.

� u1…um, v1,…,vm ∈ C∪V∪M

� x1…xn,y1…yn ∈ (Member of C)∪V

Φ≡subst({u1/v1,…,un/vn},Φ1)∧ Φ2 {structural aspect} 

Rj(s,t)=subst({p/s,q/t},Qi(p,q))                       {temporal relations}                   

Ψ≡subst({x1/y1,…,xn/yn},Ψ1)                          {behavioral aspect}
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Case Study 4: Instance of The 
Observer Pattern

Subject

notify(){

for all o in observers

o->update(); }

get-time ()

tick()

Clock Timer

get-time(){

return subject-time;}

tick()

{ …notify();}

subject-time

update(Subject)

update (Subject)

Digital Clock

update (){

observer-time=

subject->get-time();}

observer-time

observers

subject

*

attach(Observer)

detach (Observer)

notify ()

Subject Observer

update (Subject)

Analog Clock

observer-time

subject
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BPSL Specification of an Instance 
of The Observer Pattern

Y=subst({concrete-subject/clock-timer, concrete-observer/observer, subject-

state/subject-time, observer-state/observer-time}, Y1)

Attached(concrete-subject<0..1>,concrete-observer<*>)≡ subst(concrete-

subject/clock-timer, concrete-observer/observer),Updated(concrete-

subject<0..1>,concrete-observer<*>)≡ subst(concrete-subject/clock-timer, 

concrete-observer/observer)∈ TR;

Φ2 ≡ ∃ analog-clock ∈ C: Inheritance(analog-clock, observer) 

Φ=subst({ concrete-subject/clock-timer ,concrete-observer/digital-clock, 

subject-state/subject-time,get-state/get-time,set-state/set-time,observer-

state/observer-time}, Φ1)∧ Φ2
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Current Progress with Research 
Collaboration in Babel Group

� Define actions entirely using temporal relations

� Define temporal relations using variables

� Define instances of patterns, patterns and pattern 

composition entirely in TLA.
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Thank You!!!


